Category Archives: Technologies for Converting Biomass to Useful Energy

Research status

1.2.1.1 Different biomass for co-combustion Biomass includes forest wastes, agricultural wastes, animal wastes and anthropomorphic wastes. Considering co-combustion with straw and coal could achieve large-scale and efficient utilization, it is attracting more and more attention and research. Most methods for research are concentrated in the laboratory using thermal gravimetric analysis, or measuring the combustion characteristics of mixtures of pollutants (including […]

Read more

TECHNOLOGIES FOR CONVERTING BIOMASS TO USEFUL ENERGY — COMBUSTION, GASIFICATION, PYROLYSIS, TORREFACTION AND FERMENTATION

A good environment and at the same time good economic living conditions—that is the goal for us as well as for our children and their children. To achieve that we need sustainable energy resources that do not harm the environment through pollution of water, air and food. At the same time we need food and thus should not compete between […]

Read more

THEORY OF GASIFICATION

A fuel gas can be produced from biomass or other feed stocks by partial oxidation at high temper­ature using oxidizing agents such as air, oxygen, steam, carbon dioxide or combination of these. In case of gasification, the temperatures used are typically between 600 and 1000°C. The differ­ent steps occurring in gasification of biomass or other feedstocks are graphically represented in […]

Read more

BIOGAS COMBUSTION AND EMISSIONS

Biogas or landfill gas (LFG) is typically produced from anaerobic decomposition of organic matter in an oxygen-free environment (Saho et al., 2011). It can also be produced through pyrol­ysis and gasification processes. Primary sources include biomass, green waste, plant material, manure, sewage, municipal waste and energy crops. While its composition can vary significantly depending on the source and production process, […]

Read more
1 2 3 12