Category Archives: AN INTRODUCTION. TO THE ENGINEERING. OF FAST NUCLEAR REACTORS

Computation — Transport and Diffusion Theory

The information required to calculate the group fluxes and import­ances by solving equations 1.27 and 1.30 consists of the specification of the reactor and the nuclear cross-sections. The latter are available in the form of data from thousands of measurements stored in data libraries such as the USA Evaluated Nuclear Data File (ENDF), the OECD Joint Evaluated Fission File (JEFF), […]

Read more

Configuration of the Reactor Core

A reactor is made up of an array of subassemblies of various types. The core subassemblies may contain fuel of several different enrichments arranged to give annular enrichment zones, as explained in section 1.3.3. The core may be surrounded by a radial breeder consisting of two or three rows of subassemblies consisting of fat fuel elements con­taining fertile material. Around […]

Read more

Core-Disruptive Accidents — Passive Protection

It may be possible to make the consequences of a core-disruptive accident less severe by incorporating “passive” protective devices in the design. By “passive” is meant a mechanism that takes protective action without external actuation, either by the automatic trip system or by human intervention. There are two main classes: devices to reduce reactivity and devices to prevent recriticality.

Read more

AN INTRODUCTION. TO THE ENGINEERING. OF FAST NUCLEAR REACTORS

Anthony M. Judd It is intended for the newcomer to the study of fast reactors, either as a student or at a later stage of his or her career. It will probably be most useful to someone who already has some knowledge of nuclear reactors. There are many excellent introductory texts for the beginner in nuclear engineering but they all […]

Read more

Comparison with Thermal Reactors

The physics of fast reactors differs considerably from that of thermal reactors. The most important difference is that the composition of the fuel is different. In a fast power reactor the fraction of fissile material in the fuel is about 20-30% compared with 0.7-3% in a thermal reactor. In a reactor designed to consume fissile or waste materials it may […]

Read more
1 2 3 12